
Version Management Tools

ELECTGON
www.electgon.com

contact@electgon.com

16.12.2017

Contents

1 Introduction . 3
1.1 What is Repository . 3
1.2 Version Control systems . 3
1.3 Common Terminologies . 3

2 Topologies of Repository Systems . 4
2.1 Centralized Version Control systems (CVCS) 5
2.2 Distributed Version Control Systems (DVCS) 5
2.3 Comparison Between CVCS and DVCS . 6

3 Tools Used in Each Topology . 7
4 Tools Comparison . 8
5 Nominated Tools in Scope . 10

5.1 SVN . 10
5.2 Git . 11

6 Conclusion . 12

2

1. Introduction

1 Introduction

1.1 What is Repository

In software development, a repository is a central ϐile storage location. It is used by version
control systems to store multiple versions of ϐiles. While a repository can be conϐigured on a
localmachine for a single user, it is often stored on a server, which can be accessed bymultiple
users.[1]

1.2 Version Control systems

Version control is used tomanagemultiple versionsof computer ϐiles andprograms. Aversion
control system, or VCS, provides two primary data management capabilities. It allows users
to

1) lock ϐiles so they can only be edited by one person at a time, and
2) track changes to ϐiles.[2]

1.3 Common Terminologies

Tounderstand version control systems, itmay be useful to clarify common terminologies that
are frequently used within a version control system.

Branch: For multiple design ϐiles or different conϐiguration of your design, it is useful to
includedesign ϐiles in categories. For instanceyoumayhave somedesign ϐiles implemented
in HTML format that are to be used for building web interface of your system. You
may have also design ϐiles described in python script that handle interaction between
web objects and database. So maintaining each design ϐiles in speciϐic branch keeps
organizationof your systemdesign ϐiles specially if there aredifferentdevelopersworking
on each branch.

Baseline: When development phase reaches accepted conditions and your system is ready
for release, last design ϐiles are labeled with a release number to indicate that these
numbers represent stable andworkingversionof the system. This release thenbecomes
a baseline of your development system. So it reϐlects mainly different release of the
system.

Checkout: developerworking an somedesign ϐiles, has to submit hiswork to themain system.
This submission is called checkout.

Clone: it is the actionof copying the reference repository into a localmachine so that developer
can add his work to that copied repository. This cloning can take place also within the
samemachine i.e. this cloning step is not limited to a server‐local machine connection,
you can clone original repository from one directory to another.

Commit: adding the developed design ϐiles to the repository is called commit. It means also
that changes made to existing ϐiles are added also at this step. Making a commit to the

3

2. Topologies of Repository Systems

repository means updating included ϐiles in the repository so new commit means new
update took place on the repository.

Merge: for a design ϐile that has been changed by two different developers, merging means
that both developers have to include their changes together in the ϐinal design ϐile.
Merging may also be used to merge two or more branches together so that the ϐinal
resulted branch will include all design ϐiles existing in each branch,

Push: itmeans adding the content or changesmade in a repository to another remote repository.

Pull: it means getting the content or changes made in a remote repository to the active
repository.

Head: for each commit process, there is a pointer points to last updated status and ϐiles of
the repository. This pointer is called Head and in some version control system it can
switch freely between new and old commits.

Tag: to remark important commits or releases or baseline, it is usually marked by a tag so
that any used can switch easily between different commits by knowing name of the tag
assigned to the target commit.

Trunk: in someversion control system, trunk refers to themain or original branch, anyother
branch in the repository are derived from this main branch.

Figure1 shows someof thesebasic terminologies that shapeouthowaversion control repository
may look like.

Figure 1: Structure of a Repository

2 Topologies of Repository Systems

There are currently many version control systems in the market. Some of them are open
source, others are proprietary. These tools, however is classiϐied into two types:

4

2. Topologies of Repository Systems

2.1 Centralized Version Control systems (CVCS)

First let’s look at CVCS as shown in ϐigure 2. The central repository serves as the hub and
developers act as separate spokes. All work goes through the central repository. This makes
version control easy and sharing difϐicult.

Figure 2: CVCS System [3]

Whenyou’reworkingwith a centralizedversion control system, yourworkϐlow for adding
a new feature or ϐixing a bug in your project will usually look something like this:

• Pull down any changes other people have made from the central server.

• Make your development, and make sure they work properly.

• Commit your changes to the central server, so other programmers can see them.

2.2 Distributed Version Control Systems (DVCS)

WithDVCS there ismore interactiondirectly betweendevelopers as shown in ϐigure3. Systems
are designedwith the intent that one repository is as good as any other, and thatmerges from
one repository to another are just another form of communication.

5

2. Topologies of Repository Systems

Figure 3: DVCS System [3]

When you work with distributed version control system, your workϐlow will be like this:

• Cloning the original repository, you will have local repository then.

• Make your development, and make sure that they are working properly.

• Commit your changes to your local repository.

• If you want to update other repository, you push your updated repository to the target
repository.

2.3 Comparison Between CVCS and DVCS

One important step to be able to ϐind out which tool can facilitate yourwork, is to understand
or be aware of topology of this tool. This can give overview about mechanism of storing and
sharing source code ϐiles. Then you can decide if this mechanism is suitable or not. Tables 1
shows quick comparison between the two topologies

6

3. Tools Used in Each Topology

CVCS DVCS
A repository contains all the information and

history about a project
A project repository may be cloned, resulting

in multiple equivalent copies.
Development cycle, per developer, is typically:

1. Check out (copy) working ϐiles from the
repository.

2. Make changes to the working ϐiles.

3. Update and possibly merge from the
repository to get any changes made by
others.

4. Commit the new version back to the
repository.

First, Repositories may change independently
and be synchronized using push or pull

operations.
Second, depending on the change, you can
update or merge (Updates happen when
there’s no ambiguity. Merges are needed

when we have conϐlicting changes.)

Previous versions of the project may be easily
recovered.

Previous versions of the project may be easily
recovered.

Multiple branches of the project may be
stored simultaneously, enabling parallel

development

Branches is also available for each user.

Merging may result in conϐlicts that must be
resolved manually. For example, when two

developers make incompatible changes to the
same section of code, the ϐirst to commit will
succeed with no errors, while the second will
get a conϐlict because the code he checked out

is not the current code in the repository.

Update or merge is done after push or pull
the repository, if there is conϐlict it has to be
resolved manually preventing the developer

from overwriting others work.

Each developer has his own copy of working
ϐiles for either the entire source tree or just

sub‐parts

Each developer has his own local copy of the
entire repository including history and

working ϐiles.
Requires less disk space. Requires more disk space.

There is a single master repository by
deϐinition.

Developers must agree on a ”master”
repository where all changes get integrated.

Developers must contact master repository to
get information about target branch.

Developers can cheaply switch between
branches of development using local

repository.
Central machine has all versions Backup for local machine is advised

Central machine has the latest ”stable” release No latest version, you may get confused about
who is having the latest version

Table 1: Comparison between CVCS and DVCS Systems

3 Tools Used in Each Topology

Here are most common softwares used as version control systems

CVCS: Open Source: CVS – Subversion (SVN) ‐ Vesta
Proprietary: IBM Rational ClearCase – Perforce – Team Foundation Server.

DVCS: Open Source: Bazaar – Git – Mercurial.

7

4. Tools Comparison

Proprietary: BitKeeper – Sun Workshop.

4 Tools Comparison

We will try to come up with best CVCS/DVCS powerful tools. This interrogation is done
against Open Source tools.

In table 2 a comparison between some important features of CVCS open source tools:

Maintainer Development
Status

Platforms
supported

Web
interfaces

Standalone
GUI

Integration
with other

tools
CVS CVS team maintained

but new
features not

added

Unix,
Windows

CVS web,
ViewVC

TkCVS
WinCVS

Eclipse
Emacs

Subversion Apache
Software

Foundation

actively
developed

Unix,
Windows

WebSVN
ViewSVN

Trac

TortoiseSVN
RapidSVN
SourceTree

Eclipse
Emacs
Visual
Studio

Vesta Kenneth
Schalk

Tim Mann

latest release
February 15,

2009

Unix VestaWeb No No

Table 2: Comparison between open source CVCS tools [4]

Basedon this comparisonwecan ϐind that SVN is the onemost used. Actually CVS suffered
a number of limitations, such as being unable to move or rename ϐiles. SVN was initially
developed as an alternative to CVS. Regarding Vesta it suffers also fromability ofmerging ϐiles
between different branches, in addition to it hasn’t updated since 2009 which may indicates
no more enhancement applied for this software.

Now, we can examine the same comparison for DVCS tools.

8

4. Tools Comparison

Maintainer Development
Status

Platforms
supported

Web
interfaces

Standalone
GUI

Integration
with other

tools
Bazzar Canonical

Ltd
limited

development
Unix,

Windows
Trac Olive,

Bazaar
Explorer

Eclipse,
Visual
Studio

Git Junio
Hamano

actively
developed

Unix,
Windows

GitHub,
Trac and

many other
web

interfaces

Git‐gui,
gitbox,
source
tree

Eclipse,
Visual
Studio,
Emacs,
Komodo

IDE
Mercurial Matt

Mackall
actively

developed
Unix,

Windows
Trac Hgk,

sourceTree
Eclipse,
Visual
Studio,
Emacs,
Komodo

IDE

Table 3: Comparison between open source DVCS tools [4]

We can ϐind then that these tools are similar in these features. However still there is some
differences can be summarized as follows:

1. Performance : In terms of raw performance, Git leads almost all benchmarks followed
by Mercurial and then by Bazaar. A detailed benchmark can be shown in table 4

Git 1.5.4.3 Bazaar 1.3.1 Mercurial 0.9.5
Initialization 0.086s 0.334s 0.137s

Adding 14.269s 4.852s 2.526s
Commit 10.263s 43.968s 30.890s

Commit (small) 0.397s 9.010s 1.913s
Diff (large) 24.425s 51.158s 37.846s

Diff (no changes) 0.343s 47.448s 1.340s
Status (no changes) 1.230s 4.027s 1.077s

Table 4: Advanced Comparison between DVCS tools[5]

2. Final Repository Size: Again Git wins here, with the least size of the Final Repository.
It is followed by Bazaar and then by Mercurial.

Git Bazaar Mercurial
92 MB 112 MB 179 MB

Table 5: Comparison Between Repositories Size

3. Design Differences: Mercurial and Bazaar are FILE LEVEL VCS as they store versions of
ϐiles but GIT is a CONTENT LEVEL VCS i.e. it stores delta of content, not the ϐile itself.

9

5. Nominated Tools in Scope

4. Repository Hosting: For open‐source and private repository hosting both Mercurial
and Git are way ahead of Bazaar in‐terms of number of Source code hosting providers
available. When there are more than 9 hosting providers for Mercurial and about 8
hosting providers for Git, only 3 hosting providers are available for Bazaar.[6]

So we can recommend here that Git is best choice if we like DVCS approach.

5 Nominated Tools in Scope

So we can nominate from previous comparison SVN as CVCS tool and Git as DVCS tool, now if
we need to come up with most appropriate tool, several aspects we have to look for.

– What is better to work with CVCS or DVCS.
– More about nominated tools from each topology.
– What experts say about these tools
– In Which applications our repository will be used.
So this decision is taken by the administrator of the system. Previous comparison was

a trial to shed the light on possible difference between these tools. What still can be shown
here is a light detail about working with the nominated tools SVN and Git.

5.1 SVN

With Subversion, you have access to a repository inside which you can insert your project
ϐiles. Subversionkeeps trackof all the changes youmake toyour ϐiles; all thedifferent versions
of the ϐiles you submit correspond to revisions. You usually access the most recent revision,
use it, make change to it and then submit a new version. You can also obtain ϐiles in the state
they were at any past revisions.

Directories in your Repository

Oneway to use this directory structure is as follow. The software product is developed under
the trunk. When the software is ready for an ofϐicial release, you copy it to a branch (e.g.
version 1.0) and to a tag (version 1.00). This is the tagged version that your clients will use.
While thedevelopment teamcontinue todevelop thenew features on themainproject (under
the trunk), the quality assurance team maintain the version in the branch in order to ϐix the
small bugs. When enough bugs have been corrected, you are ready to generate a new tag
(version 1.01,...). In parallel, new release of the softwarewill generate newbranches (version
2.0, 3.0,...). [7]

Working with SVN

STEP 0. Creating a new directory: This can be done simply by

> svn import

STEP 1. Checking out a directory: This can be done by

> svn checkout < d i r e c t o r y o f the repos i tory > <copy name>

10

5. Nominated Tools in Scope

STEP 2. Editing: you can add, delete, copy or move ϐiles.
STEP 3. Committing your changes: Using

> svn commit

The modiϐied ϐiles will be uploaded to the server and a new revision will be created that
other users can, in turn, check out.[7]

5.2 Git

You can get a Git project using two main approaches. The ϐirst takes an existing project or
directory and imports it into Git. The second clones an existing Git repository from another
server.

Initializing a Repository in an Existing Directory

You need to go to the project’s directory and type

> g i t i n i t

Cloning an Existing Repository

This can be done by typing

> g i t c lone <d i r e c t o r y o f the repos i tory >

Tracking New Files

In order to begin tracking a new ϐile, you use the command

> g i t add < f i l e name>

Staging Modiϐied Files

In Git, Files that aremodiϐied are needed to be Staged ϐirst before committing this can be done
by

> g i t s t a t u s

Committing Your Changes

The simplest way to commit is to type

> g i t commit

11

6. Conclusion

Edit Files

In Git you can also remove ϐiles

> g i t rm

or Move ϐiles

> g i t mv

Integrate your work with other repository

This can be done using Push or Pull
to pull a repository from other machine

> g i t f e t c h [remote−name]

to push a repository into other machine

> g i t push < o r i g i n master >

[8]

6 Conclusion

At this point we can ϐind out that both tools (SVN and Git) have easy commands to work
with. Themain difference is structure or topology that each tool is following (CVCS or DVCS).
As mentioned in previous section, decision of which tool to choose depends on the user
system and business requirements. These requirementmay specify a need to store and track
development ϐiles, with options to commit process management ϐiles (Minutes of Meeting,
Plans, Speciϐications, ...) Other business plans that may arise, like Bug tracking environment,
automation environment, etc shall be taken into consideration also. These environmentswill
be in interact with development ϐiles which are kept in version management tool.

By keeping these business requirements in mind, you can examine the following feature
in the nominated tool to make sure that it can fulϐill your requirements:

– Stable: no bugs or no severe complaints observed on this tool.
– High Performance: in terms of minimizing time and effort needed for committing or

merging different version ϐiles.
– Efϐiciency of Use: to be customizable, simple and easy to work with.
– Ability to be later on integrated with bug tracking systems/Automation tools.

12

Bibliography

[1] Source: ”http://www.techterms.com/deϐinition/repository”.

[2] Source: ”http://www.techterms.com/deϐinition/version_control”.

[3] Source: ”http://blog.appfusions.com/cvcs‐vs‐dvcs‐and‐the‐pros‐and‐cons‐of‐dvcs‐git”.

[4] Source: ”http://en.wikipedia.org/wiki/Comparison_of_revision_control_software”.

[5] Source: ”https://git.wiki.kernel.org/index.php/GitBenchmarks#bzr.2C_git.2C_and_hg_per
formance_on_the_Linux_tree”.

[6] Source: ”http://www.techtatva.com/2010/09/git‐mercurial‐and‐bazaar‐a‐
comparison”.

[7] Source: ”http://laganiere.name/subversionTut/index.shtml”.

[8] Source: ”http://git‐scm.com/doc”.

13

